N-body problem
- 网络N体问题;多体问题
-
On Central Configurations of N-body Problem
多体问题的中心构型
-
An N-body problem scheduling algorithm based on workstation clusters
基于机群系统的N体问题调度算法
-
Newtonian n-body problem is an old , complicated problem .
牛顿n-体问题是一个古老而复杂的问题,即便是平面三体问题至今也没有得到完全解。
-
A parallel algorithm for N-body problem on clusters is designed and its performance model is provided .
为此,在机群计算平台上,设计了N体问题的并行算法,推导出该算法的性能模型。
-
The numerical methods of solving the collinear N-body problem are studied in detail .
研究N体问题共线解的数值方法。
-
Central Configuration and Periodic Solution of N-body Problem
N&体问题的中心构型及周期解
-
A honeycomb type central configuration of N-body problem
N体问题的蜂窝型中心构型
-
Numerical simulation on the gravitational N-body problem
引力N&体问题的数值模拟计算概况
-
The Improved Ahmad-Cohen Scheme - A Numerical Integration Scheme for the Gravitation N-Body Problem
改进的Ahmad-Cohen方法&引力N体问题的一个积分方法
-
In the research of the N-body problem , Central Configuration is an important content From it , we can obtain periodic solution ;
在N-体问题研究中,中心构型是研究它的一个重要内容。
-
N-body problem is a problem researching on the universal gravitation between celestial bodies , this problem belong to the category of parallel calculation .
体问题是研究天体间万有引力的问题,属于易并行计算的范畴。
-
It is now widely believed that the N-body problem for N ≥ 3 cannot be solved in the same sense as the two-body problem .
事实上N(≥3)体问题是不可能完全解决的。
-
When I look at Ruby , I perceive a balance between different design goals , a complex interaction reminiscent of the n-body problem in physics .
当我观察Ruby,对于一个复杂的物理学上n-body回忆者问题,我觉察到了不同设计目标的一种平衡。
-
N-Body problem is a classic high performance computing application to simulate the evolution of N celestial bodies , given the initial positions , masses , and velocities of particles .
N-Body问题是一个经典的高性能计算应用,由给定的粒子初始位置、质量、速度等模拟N个粒子的天体演化进程。
-
The N-body problem covers many fields in science and technology , which is computationally intensive for O ( N2 ) complexity , thus a candidate for parallel computation .
N-body问题涉及了科学和工程中的许多领域,它的主要特点就是O(N~2)的计算量,采用并行计算方法是解决N-body问题巨大计算量的终极选择。
-
The four-order and six-order Symplectic Algorithm with ameliorated one are used for the Two-Body and the N-Body problem of the Hamilton system in the solar system respectively .
将通常的四阶和六阶辛算法与改进的显式四阶和六阶辛算法分别应用于太阳系Hamilton系统的二体和N体问题。
-
The N-body problem is a system of ordinary differential equations that describes the motion of N point masses or particles moving under Newton 's law of motion , where the only acting forces are the mutual gravitational attractions .
N体问题是研究的一个常微分方程组,它描述了N个质点在万有引力的作用下的运动。